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Abstract

Multiphase flow with impinging droplets on an icing surface with a flowing supercooled surface layer is

investigated. The air-assisted flowing layer is modelled with the cross-phase shear stresses imparted at the

moving liquid/air interface. Runback and runoff of the surface layer are predicted by mass flow across the

boundaries between adjacent elements in the numerical formulation. This liquid runoff is determined by

coupled heat and momentum balances for the unfrozen water layer. The numerical analysis is developed

with a control-volume-based finite element method (CVFEM). An Eulerian formulation with volume av-
eraging is developed to accommodate the near-wall elements containing both dispersed and continuous

phases. The predicted results are successfully validated through comparisons with analytical solutions and

measured data.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

Multiphase flow with droplets in three-phase conditions arises when impinging droplets on a
moving phase interface lead to the formation of a surface liquid film. This type of multiphase flow
occurs in various engineering instances. Some important examples include aircraft and power line
icing, thermal spray coatings, thin laminations manufactured by uniform droplet spray (UDS)
processes and droplet/wall interactions in combustion engines. For example, heat transfer during
impingement of fuel spray droplets on the walls of a piston cavity affect the combustion process in
DI diesel engines. In the icing examples, rime ice (or dry ice) occurs when incoming droplets are
*
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solidified immediately upon impact on the ice surface. Impinging droplets impart the latent heat
of phase change upon solidification at the phase interface. This energy transfer and other heating
modes may heat the ice surface sufficiently to sustain an unfrozen water layer. In that case, glaze
ice (or wet ice) is formed, whereby growth of the ice and unfrozen water layer occur simulta-
neously.
Different regimes of runback flow of this supercooled water layer may occur on the glaze ice

surface (Hansman et al., 1991). These regimes include (i) a smooth wet zone with a uniform water
film, (ii) a rough zone with horn-shaped elements, (iii) another runback zone with rivulets and (iv)
a dry zone with rime ice. In the rough zone, surface tension causes coalescence of unfrozen water
into beads. The transition between smooth and rough zones may be related to the transition of the
boundary layer from laminar to turbulent. The runback water often freezes after a short distance
traveled downstream, where there is little or no droplet impingement and sufficient heat losses.
Freezing of the runback water can produce horn-shaped structures, which characterize glaze ice
(Kind, 1998). Stability of the adjacent air stream is affected by this runback flow (Tsao et al.,
1997). Experimental studies involving icing of power lines have been presented by Lu et al. (1998),
while Tsuboi and Kimura (1998) have predicted numerically the droplet flows around such
conductors. The application of computational fluid dynamics (CFD) represents an important
technology for overcoming problems arising from icing of aircraft and power lines.
This article will consider an extension of conventional two-fluid formulations to accommodate

volume averaging of one dispersed phase (droplets) and three continuous phases (air, surface film,
ice), simultaneously. The dynamic interactions between these phases are included through ap-
propriate cross-phase interactions. An example is the interfacial resistance (drag) between the
droplet and air phases. In this Eulerian type method, reduced computational costs (time and
storage) can be realized, while effectively retaining the appropriate thermal and fluid physics
through the cross-phase interactions. This approach allows the droplet flow equations to be ex-
pressed in a standard scalar transport form on a fixed grid. In this article, these equations for
impinging droplets and glaze ice growth will be established by a volume averaging procedure.
During glaze ice growth, the impinging droplets arrive on the flowing supercooled surface film.

This unfrozen layer of water along the ice surface can contribute appreciably to the dynamics of
glaze ice buildup. The radial flow of a thin fluid layer, under the influence of Coriolis, centrifugal,
gravity and surface tension forces was predicted numerically by Myers and Charpin (2000). Under
certain conditions, the velocity equations become de-coupled and the effects of Coriolis forces on
the film height become negligible. For tension-driven flows of thin films, traveling waves and slip
conditions at the free surface can be modelled by higher-order differential equations (Myers,
1998). Analytical modeling of glaze ice involves coupled heat and momentum balances in the
unfrozen water layer (Poots, 1996). The dynamics of the flowing supercooled water film has been
documented by Karev and Farzaneh (2001). This issue has also been dealt with specifically for
steady state conditions (Poots, 1996), shear driven film flow (Bourgault et al., 2000) and general
modelling (Myers et al., 2002). Hedde and Guffond (1992) predict a glaze ice accretion numeri-
cally through a grid deformation. In this approach, a new grid is generated in the runback di-
rection along the glaze ice surface, or by interpolating the rate of icing on the original mesh. The
ice height is calculated based on the icing rate multiplied by the time step.
In this article, a new three-phase formulation involving film flow of the water layer will be

presented. This formulation is based on previous studies involving glaze ice heat transfer (Mes-
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singer, 1953; Naterer, 2002a; Myers and Hammond, 1999), as well as extensions of previous finite
element modeling of rime ice growth (Naterer, 2002b). Rather than explicitly resolving the droplet
trajectories (Lagrangian approach) or film interface location (interface tracking method), this
work uses volume averaging (Eulerian method) to predict the surface film flow. The goal of such
modeling is to yield computational savings, in terms of time and storage, due to the volume
averaging procedures therein. It is shown that such averaging properly accommodates the inter-
phase processes (lost through the averaging) with appropriate cross-phase interactions supplied
thereafter. Predicted results involving ice buildup are successfully compared with analytical and
experimental data.
2. Problem formulation

In the current Eulerian formulation, the multiphase equations will be determined by spatial
averaging of the individual phase equations, within a control volume containing multiple phases.
These phases may include gas (air), liquid (droplets and/or unfrozen water layer) and solid (ice)
phases, simultaneously. For example, impinging supercooled droplets arrive on the advancing ice
boundary, which is covered by a flowing supercooled layer of water (see Fig. 1). Additional cross-
phase interactions must be supplied, due to information lost at the interfacial boundaries in the
volume averaging. In this section, this volume averaging procedure will be described.
2.1. General scalar conservation equation

The conservation form of the governing equation for a scalar quantity, /k, associated with
phase k in a multiphase mixture, is determined from volume averaging over a differential control
volume (Banerjee and Chan, 1980). In this article, k ¼ 1 refers to the dispersed phase (droplets),
while k ¼ 2 refers to the carrier phase of the air stream. In the near-wall region, the subscript k
would cover three different phases, namely gas (air), liquid (droplets and/or surface film) and solid
(ice) phases.
B
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Fig. 1. Glaze ice with unfrozen water layer.
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When applying spatial averaging to the dispersed (droplet) phase, the predicted results will give
a volume averaged representation for the behaviour of multiple droplets within a control volume.
Certain microscopic information is lost in this averaging procedure. Information lost at the in-
terfacial boundaries is re-supplied through constituitive relations. In this article, a volume aver-
aged quantity, haki, and volume fraction of phase k (used as a subscript), denoted by Ck, are
defined as follows:
akh i ¼ 1

Vk

Z
Vk

ak dV ð1Þ

Ck ¼
Vk
V

ð2Þ
Based on volume averaging of the differential scalar conservation equation (Banerjee and Chan,
1980),
o

ot
Ck qk/kh i þ o

ox
Ck n̂nx � ðqk/kvk

D
þ jkÞ
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þ 1

V

Z
a

_mm00
k/k

�
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�
dS ¼ Ck ŜSk
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ð3Þ
This results represents a 1-D form of the equation, which can be readily extended to include multi-
dimensionality. In Eq. (3), _mm00

k and jk refer to the cross-phase mass flux (units of kg/m
2 s) and

diffusive flux, respectively. Also,
R
a refers to integration over the total area, including any area of

phase k in contact with the external walls or boundaries, aw, and the interfacial area per unit
volume, ai, i.e., along the boundary separating the phases. Based on Eq. (3), the mass and mo-
mentum equations of multiphase flow can be obtained. In the multi-dimensional form of Eq. (3),
the dot products with n̂ny and n̂nz, leading to y- and z-direction derivatives, respectively, would be
included.
2.2. Mass equation

This equation will be written in terms of the liquid water content, bqlql , which represents the mass
of water (droplets) per unit volume of the water/air mixture. It is defined by
q̂ql ¼
ml
V

¼ Ck qkh i ð4Þ
The volume averaged form of the mass equation becomes (Banerjee and Chan, 1980)
oq̂ql
ot

þ oðq̂qlulÞ
ox

þ oðq̂qlvlÞ
oy

¼ 0 ð5Þ
This equation will be solved analogously to a transport equation involving species concentration,
whereby the ‘‘concentration’’ of droplets (or phase fraction) is tracked throughout the flow field.
This concentration of the liquid phase is usually called the liquid water content (LWC) in the
aircraft icing literature. The volume fraction of phase k, denoted by Ck, can be calculated in terms
of q̂ql from Eq. (5) following multiplication by qw (the density of water). In three-phase conditions,
both liquid and solid fractions are required along the ice surface, since growth of ice and the
unfrozen water layer may occur simultaneously.
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2.3. Momentum equations

The volume averaged form of the x-direction momentum equation will be approximated as
(Naterer, 2002b)
oðq̂qlulÞ
ot

þ oðq̂qlululÞ
ox

þ oðq̂qlulvlÞ
oy

þ h _mm00
l uli ¼ ClhGx;li ð6Þ
An additional gravity term appears in the y-direction momentum equation, so that droplets fall
under their own weight. The momentum equations for the carrier (air) phase are derived sepa-
rately and resemble the single phase Navier–Stokes equations (Tsuboi and Kimura, 1998), except
that cross-phase terms are included for interfacial resistance (drag) between the droplets and air.
In the numerical formulation, the momentum equations are solved once q̂ql (or Cl) is obtained
from Eq. (5).
In Eq. (6), the cross-phase interactions, Gx;k, are determined from an interfacial resistance law,

based on correlations presented by Hewitt et al. (1997) and Tsuboi and Kimura (1998), with drag
coefficients adopted as by Szilder et al. (1987). Such correlations can be expressed in terms of an
inertia parameter and droplet freestream Reynolds number, based on the classic work of Lang-
muir and Blodgett (1946). The resulting equations govern the external flow, while additional near-
wall equations are needed for the flowing supercooled surface layer. A thin film approximation is
used for the momentum equation in this flowing surface layer (Poots, 1996). In an upcoming
section, it will be shown that this approximation leads to a linear velocity profile within the
unfrozen water layer. Once this velocity profile is determined, the mass outflow from a control
volume due to surface runback can be determined. This runback flow of unfrozen water gives the
portion of liquid mass transferred between elements along the moving boundary of the ice surface.

2.4. Additional real-world complexities

Before an ice accretion model can be applied to actual problems such as aircraft icing, addi-
tional real-world complexities must be considered, such as roughness and surface vibrations.
Although detailed modelling of these factors is beyond the scope of the current article, their
general impact should be considered. The purpose of this section is to give a brief physical outline
of some examples, with some indication of how the numerical model could be extended to ac-
commodate them.
For example, the impact of ice surface roughness on the convective heat transfer and friction

coefficients has been developed based on a momentum integral equation in Appendix A.3.
However, for more generally derived profiles of the near-wall velocity or temperature distribution,
as needed in calculations such as turbulence transition, a damping effect of roughness based on the
Van Driest profile (1956) can be adopted (Hedde and Guffond, 1992). The icing surface often
contains discrete zones along the surface, which exhibit varying surface roughness. Close to the
stagnation point of the body, the icing surface is often smooth and uniformly wet (Hansman et al.,
1991). Following the smooth zone, there is a transition to a rougher ice surface with insufficient
water to maintain a uniform film. The runback water can coalesce into water beads, depending on
local boundary layer transition to turbulence. The enhanced heat transfer due to turbulence
causes sufficient freezing to partially dry the surface and cause the bead formation. In the current
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article, a discrete transition is assumed from rime (dry) ice to glaze (wet) ice, considering a uni-
form water film without the bead formation.
The formation of transition beads at the smooth/rough interface affects the heat transfer within

the rough zone, while initiating drying of the surface and freezing of the downstream beads. Some
ice roughness elements can grow into distinct protrusions, under certain glaze ice conditions with
high liquid water content (Hansman et al., 1991). If these elements extend far enough above the
icing surface, they can lead to separate macroscopic horned ice accretions, which catch droplets
that would otherwise have been swept away from the ice surface. This collected water can slowly
freeze into rivulets or lead to other coalesced water cells. Although not modelled in the current
work, a maximum stable droplet size for the roughness height within the horn zone could be
utilized. Then, if the water layer in the control volume exceeds a maximum film thickness based on
the impinging water content, the heat balance would suggest how much water would be shed from
the surface to runback. Iteration would be required for convergence between the estimate of this
parameter in the boundary layer model, and the increase of film thickness. Accurately predicting if/
when ice sheds off from the surface is expected to require detailed understanding of these processes.
In addition to surface roughness, icing of the surface can produce dynamic forces that result in

surface vibrations. Such vibrations add considerable complexity to the calculations, due to the
simultaneous ice growth and time varying aerodynamic forces on the moving ice surface. In some
icing conditions, these vibrations may become unstable, thereby leading to serious hardware
damage. The flow induced vibrations lead to strong non-linearities in the governing equations.
The oscillating position of the icing surface depends on the aerodynamic forces, while the flow
past the ice surface is altered by the surface vibrations. A main parameter of interest required
from the icing model is the net force arising from the flow past the ice surface. The surface vi-
brations lead to periodic trends of the drag and lift coefficients over time, due to processes such as
vortex shedding and boundary layer separation. The aerodynamic forces arising from these vi-
brations can be predicted after the velocity, velocity gradient and pressure distributions are ob-
tained from the CFD code. Then, a numerical method such as moving grid points or coordinate
transformations would be needed for displacement of the icing surface due to the time-varying
forces. Once the surface is displaced, the flow field prediction must be re-calculated, and iteration
is needed until solution convergence is reached.
3. Numerical formulation

The numerical formulation is based on a hybrid finite element/volume method, as detailed
elsewhere (Naterer, 2002b,c). In this section, the modeling of phase change of the impinging
supercooled droplets, as well as the momentum equations and runback flow of the unfrozen water
layer, will be described.
3.1. Modeling of phase change of incoming droplets

Based on Messinger (1953), the energy balance at the ice/air interface during rime ice growth is
qk þ ql þ qa ¼ qcond þ qconv þ qd ð7Þ
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The individual terms are given by the following heat fluxes (designated by q):

• qk ¼ ðbVGÞV 2=2; kinetic energy of impinging droplets,
• ql ¼ qLðoB=otÞ; release of latent heat of fusion,
• qa ¼ rhV 2=2cp; viscous heating (coefficients adopted as by Myers and Hammond, 1999),
• qcond ¼ 	kðoT=onÞ; rate of heat conduction through ice, unfrozen water layer,
• qd ¼ bVGcwðTw 	 TaÞ; cooling by incoming supercooled droplets,
• qconv ¼ hðTw 	 TaÞ; convective heat loss,
• qevap ¼ vee0ðTw 	 TaÞ; evaporative heat loss.

These modes of energy exchange are illustrated in Fig. 1. The variables b, B, e0, G, h, L and V refer
to the collection efficiency, ice thickness, vapor pressure constant, liquid water content, convection
coefficient, latent heat of fusion and velocity magnitude, respectively. During rime ice growth in
Eq. (7), droplets are solidified immediately on impact, without a surface liquid film experiencing
the evaporative heat loss. However, such evaporative heat losses occur from the surface of the
unfrozen surface film, after transition to glaze ice. In that case, the evaporation energy term, qevap,
is included in Eq. (7).
After transition to glaze ice, only a fraction of the latent heat of incoming droplets is released,

since some droplets remain in the surface liquid film. Based on Messinger (1953), this fraction can
be determined by re-solving Eq. (7), in terms of the unknown proportion of latent heat released, n,
i.e.,
n ¼ 1

bVGL
ki

oT
on̂n

���� ����	
þ hðTf 	 TaÞ þ bVGcwðTf 	 TaÞ þ vee0ðTf 	 TaÞ 	

1

2
GV3



ð8Þ
where n̂n refers to the direction normal to the interface. The proportion, n, is illustrated in Fig. 2. It
represents the fraction of energy required to raise the ice temperature up to Tf . The temperature of
Tf refers to the freezing point (0 �C for water). Thus, it gives the fraction of impinging droplets
which freeze on the ice surface. The remaining fraction, 1	 n, stays in the liquid phase and flows
in a thin layer along the ice surface. In Fig. 2, ip and SCV refer to integration point at the
midpoint of each sub-surface, and sub-control volume, respectively.
In Eq. (8), a denominator of bVGL is obtained. From a mass balance of incoming droplets and

growing ice and surface water, the fraction of incoming droplets which freeze, n, is the ice growth
rate multiplied by qi=bVG. Also, from a heat balance at the water/ice interface, the ice growth rate
is determined from the difference between temperature gradients on both sides of the interface,
multiplied by k=qiL. Using the heat flows from Eq. (7) to represent the water temperature gra-
dient, and combining the expressions, leads to the denominator of bVGL in Eq. (8). For the
purpose of estimating n in Eq. (8), the approximation is made that the unfrozen water layer
temperature, Tw, is about Tf (phase change temperature; 0 �C). This approach represents a quasi-
isothermal film, since the terms of Eq. (8) are determined from a balance at the water/air interface,
which includes the temperature gradient in the unfrozen water layer. It should be noted that the
result in Eq. (8) has multi-dimensional applicability, unlike analytical solutions developed for
certain circumstances, such as 1-D conditions.
An important component of Eq. (8) involves the estimation of the convective heat transfer

coefficient, h. This coefficient can be determined after using the computed velocity field to solve
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the energy equation for temperature, particularly the local air temperature, Ta. Then, the Fourier
heat flux in the fluid at the wall (subscript w) represents the computed heat transfer by convection
due to Newton�s Law of Cooling, i.e.,
	k oT
oy

����
w

¼ hðTw 	 TaÞ ð9Þ
In this way, h can be determined once the grid is sufficiently refined within the boundary layer to
accurately represent the wall temperature gradient. This approach involves a detailed near-wall
grid refinement, as well as the wall temperature, which may be unknown. Also, modelling of
incoming droplets at the moving solid/liquid interface would require re-meshing at every time
step, in order to retain the mesh refinement in the boundary layer region of transient ice growth.
These steps could entail significant computational costs, both in terms of time and storage.
As a result, an alternative approach is described here to approximate Eq. (9). For laminar flows

(see Appendix A),
hðxÞ ¼ 0:2926km	0:5 u1ðxÞ	2:87
Z S

0

u1ðxÞ1:87 ds
	 
	0:5

ð10Þ
where m and u1ðxÞ represent the kinematic viscosity and the velocity component parallel to the
wall outside of the boundary layer, respectively. For turbulent flows, the Stanton number, St, is
written in terms of the Prandtl number, Pr, as follows:
StðxÞ ¼ hðxÞ
qcpu1ðxÞ

¼ 0:0287Pr	0:4 ðTw 	 T1Þ0:25l0:2R x
0
ðTw 	 T1Þ1:25qu1dx

h i0:2 ð11Þ
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Details regarding derivations of these results, together with their extension to rough surfaces
arising during icing, are outlined in Appendix A. Additional details regarding their roles in the
heat transfer modeling are documented by Naterer (2003).
3.2. Discretized momentum equation in the surface liquid layer

As described earlier, runback flow occurs in the unfrozen water layer during glaze ice condi-
tions. Along the ice surface, impinging droplets impart latent heat into the surface while freezing,
which generates and sustains the flowing supercooled surface film. During the glaze ice growth, a
momentum balance within the surface film must be considered to predict the flow behaviour
within the liquid layer. A thin film approximation will be used in this analysis (note: previously
developed for icing problems by Poots, 1996). Furthermore, an energy balance in the liquid film
involves the fraction of liquid leaving a finite volume and entering an adjacent control volume. If
fewer or no droplets impinge on the surface, or insufficient heat is transferred into the ice surface,
then the liquid layer may freeze and no longer flow along the ice surface.
In this article, a continuous layer of unfrozen water flows along the glaze ice surface. Such

flowing supercooled water along an ice surface has been documented by Karev and Farzaneh
(2001). In this work, it will be assumed that the unfrozen water layer is mainly driven by a
constant shear stress, denoted by s, applied to its outer edge by the adjacent airstream. From a
scaling analysis under typical icing conditions, it can be shown that the dominant term in the
streamwise film momentum equation is the cross-stream diffusion. In particular, the reduced
x-momentum equation parallel to the ice surface for a sufficiently thin film becomes (Bourgault
et al., 2000)
o2u
oy2

¼ 0 ð12Þ
which represents a quasi-steady result with a neglected streamwise pressure gradient within the
liquid layer.
Various surface film regimes have been classified by Fulford (1964) based on the film Reynolds

number, i.e.,
Reb ¼
�uub
mw

ð13Þ
where �uu and b refer to the mean velocity and local height of the water film, respectively. The
transition Reynolds number from laminar to turbulent flow is Reb ¼ 270. A laminar regime is
followed by laminar/wavy and turbulent regimes when the film Reynolds number increases.
However, their detailed structures are affected by the impinging droplets in realistic icing con-
ditions. Additional factors, such as instabilities of the advancing solid/liquid interface and shear-
driven interaction of the free surface with droplets, render a detailed analysis difficult. In the
current article, analogies to other similar film flows will be used as a basis from which the glaze
icing can be analyzed.
Equation (12) is solved subject to the following boundary conditions:
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ou
oy

����
y¼b

¼ s
qwmw

ð14Þ

uðy ¼ 0Þ ¼ 0 ð15Þ

to yield the following linear velocity profile in the unfrozen water layer,
u ¼ sy
qwmw

ð16Þ
This result has been derived in the same context by Bourgault et al. (2000), and a more general
form by Myers et al. (2002). Integrating this profile across the thickness of the film yields the
following mean velocity:
�uu ¼ 1
b

Z b

0

udy ¼ sb
2qwmw

ð17Þ
which can be used to determine the film Reynolds number.
Based on experimental data for the shear stress at the water/air interface in the laminar regime

(Cheremisinoff and Davis, 1979),
s ¼ 1
2
fiqaV

2
a ð18Þ
where Va and fi refer to the local air velocity and interfacial friction factor, respectively. The
friction factor is different than the skin friction coefficient (usually denoted by cf ). The skin
friction coefficient refers to flow along a stationary solid surface, while not accounting for the
effects of shear action due to a moving surface film. Based on experimental data correlated by
Cheremisinoff and Davis (1979),
fi ¼ 0:008þ ð2� 10	5ÞReb ð19Þ
Also, from experimental data in the turbulent regime (Cheremisinoff and Davis, 1979) , the in-
terfacial shear stress is
s ¼ 4� 10	3 � qaV 2a
1	 2� 10	5 � b2qaV 2a =ðqwm2wÞ

ð20Þ
A smooth free surface of unfrozen water, without surface waves, is idealized in these approxi-
mations. Physical data involving the detailed turbulence structure of surface films is limited,
particularly in the presence of solid/liquid phase change and impinging droplets, as they occur in
icing problems. There exists certain similarities between free surface flows in channels and wind-
driven film flows. The dynamics of the processes in supercooled film flow have been outlined by
Karev and Farzaneh (2001). Turbulent eddy motion near the outer free surface of a thin water
film is expected to be suppressed by the ice surface, when compared with deep layers, including
free channel flows. The wind-driven shear action imparts a momentum flux across the free surface
which diffuses downwards through the supercooled water layer.
Within the unfrozen water layer, surface tension is expected to suppress turbulent velocity

fluctuations normal to the free surface. When covered by a liquid layer, the glaze ice surface is
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usually smooth. Thus, surface roughness is not expected to have appreciable impact on the tur-
bulence, unlike rime ice which may involve considerable surface roughness. In that case, super-
cooled droplets freeze immediately on impact, thereby creating interspersed air/ice pockets and
leading to roughness along the ice surface. In this article, the film flow is considered to occur along
a smooth glaze ice surface. Its detailed interaction with the external flow can be predicted by a
coupled Navier–Stokes solver in the surface film and external flow field. However, this iterative
approach would entail considerable computational costs, partly due to adaptive re-meshing re-
quired at each time step. The following section develops an alternative approach, based on ex-
perimental correlations such as Eq. (20), for the flowing supercooled surface film.
3.3. Prediction of unfrozen water layer runback

Once the mean velocity in the surface film is predicted by Eqs. (16) subject to (18) or (20), the
mass flow rate of runback water can be determined. In particular, consider a control volume along
the edge of the ice surface, thereby including ice, water and air phases, simultaneously (see Fig. 2).
The respective phase fractions of ice, unfrozen water and air for the control volume centered
about node i (subscript i) are Cs;i, Cl;i and 1	 Cs;i 	 Cl;i, respectively. The runback water is as-
sumed to flow in the direction of the local external air velocity at node i, which is denoted by Va;i.
This air velocity is calculated from the Navier–Stokes solver in the freestream. Within the sub-
control volume (SCV) containing the three-phase mixture, the height of the liquid film, b, can be
estimated by the liquid phase fraction, Cl;i, multiplied by 2A=Ds, where A and Ds refer to the SCV
area and elemental side length, respectively (see Fig. 2).
Under these conditions, the following runback mass flow rate, _mmi, is obtained for the control

volume centered about node i,
_mmi ¼ qw�uul;ib ¼ qw
sibi
2qwmw

 �
bi ð21Þ
where the subscript l refers to liquid (unfrozen water). A similar expression can be obtained for the
other mass flow rate (denoted by _mmiþ1) within the other SCV of the same finite element along
the ice surface. This calculation raises an important feature of the runback flow algorithm, namely
the two-dimensionality. In the previous heat transfer and momentum equations, variations in the
direction parallel to the ice surface were not considered. However, in the context of the full
numerical model, they represent a locally 1-D approximation within a given finite element. After
all finite elements are assembled together, variations in both directions (including parallel to the
ice surface) are predicted. For example, si varies with Vaðx; yÞ in Eq. (21). It is expected that the
locally 1-D sub-element approximation is reasonable, particularly when the grid is sufficiently
refined.
Once _mml;i and _mml;iþ1 are computed, these flows represent an inflow to a SCV, equal to the outflow

(except opposite in sign) from the other SCV in the finite element along the ice surface (see Fig. 2).
Consider the net flux across the sub-surface (SS) separating both of these SCVs. Then, the net
mass transported across this SS over a time step, Dt, is
ml;r ¼ _mml;i
��� 	 _mml;iþ1

���Dt ð22Þ
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where the subscript r refers to runback. After dividing by water density, this net mass flux can be
expressed in terms of a volume of water. Then, dividing that runback volume by the SCV area
(per unit depth), the resulting phase fraction of runback flow, Ci;r, is determined.
In the numerical procedure, the liquid phase fraction was estimated previously, based on the

mass influx of droplets and a heat balance involving non-solidified droplets. However, this
fraction is now updated based on the runback flow, i.e.
Cl;i ¼ max½minðCl;i þ Cl;i;r; 1	 Cs;iÞ; 0 ð23Þ

The max (maximum) condition is applied to ensure that the runback inflow cannot exceed the
volume capacity of the SCV. Similarly, the min (minimum) condition is applied to ensure that the
outflow does not remove more liquid than liquid available in the SCV. Once applied in this way,
the runback flow can be predicted, after the phase fractions are determined based on incoming
droplets from the external flow field. The extent of surface runoff is affected by the heat balance at
the ice surface and Eq. (18). In particular, a limiting case occurs when the ambient air temperature
decreases sufficiently to produce rime ice instead of glaze ice. In that case, no surface runoff is
predicted, since bi ! 0 when the liquid fraction approaches zero. The other limiting case occurs
when no ice forms, as the air temperature exceeds the phase change point of water (0 �C). In that
case, all incoming droplets flow off the surface due to runback.
Special consideration is required for convective upwinding of the droplet influx on the ice

surface. For the external multiphase flow, a pressure-weighted upwinding is used to express the
droplet flux at a sub-surface in terms of surrounding nodal values (Naterer, 2002b). These nodal
values include both upstream and downstream influences. However, at the moving ice boundary,
the downstream influence on incoming droplets should be removed since the solid ice surface is
located downstream, rather than the droplet flow. As a result, pure upwinding of the droplet
influx is performed in control volumes along the ice surface. For example, a non-zero ice fraction
would be detected within a sub-volume of an element along the ice surface. Then, the upwinding
coefficient at that sub-surface will not include any influence of the local node corresponding to
that sub-volume, since that sub-volume is immersed in ice (or ice and unfrozen water layers, si-
multaneously). This approach permits impinging droplets at an oblique angle to the phase in-
terface. Both the strength and directionality of the droplet influx is accommodated by calculating
the component of droplet influx normal to the sub-surface of interest. In this way, the directional
component of the upwinded velocities is used to determine the impinging droplet flux on the ice
surface.
4. Results and discussion

In this section, validation of the previous numerical modelling will be performed through
comparisons with analytical solutions and measured data. The first example involves incoming
droplets and glaze ice growth on a planar surface, as depicted in Fig. 1. Since this example in-
volves a high incoming velocity (90 m/s), it represents aircraft icing conditions rather than
structural icing, such as icing of overhead power lines. The results will signify the reduced ice
growth due to liquid runoff from the flowing supercooled surface film, in the direction perpen-
dicular to the incoming velocity. Furthermore, they will signify the effects of parameters such as
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air and surface temperatures, surface heating rate, and others. Although certain trends could be
observed from the analytical solution (Myers and Hammond, 1999), this article�s focus is pre-
senting a numerical algorithm which could be applied to more complex geometries.
Aircraft icing usually involves higher air velocities with smaller droplet sizes than conditions

encountered in structural icing. Extensions to the latter (structural icing) case would require
modifications of Eq. (7), particularly the incoming droplet portion. For larger droplets (i.e., di-
ameter of the order of a millimeter; power line icing), the kinetic energy contribution would likely
arise at the ice/water interface, since the droplet impinges and passes through the thin liquid film
without losing appreciable energy at the top of the water/air interface. In that case, when the
droplets are larger or within the same order of thickness as the unfrozen liquid layer, they can
essentially occupy the entire glaze film nearly instantaneously upon impact.
Although not explicitly outlined in the analytical solution, the numerical model must accom-

modate the two-dimensionality occurring from surface film runback in the direction perpendicular
to the incoming air stream and droplets. The thickness of ice, BðtÞ, and the unfrozen water layer,
bðtÞ, can be expressed by the following analytical solutions (Myers and Hammond, 1999):
oB
ot

¼ a2
B
	 a3
1þ a1b

ð24Þ

b ¼ bVG
qw

ðt 	 twÞ 	
qi
qw

ðB	 BwÞ ð25Þ
where the variables tw and Bw refer to the time and thickness of ice at the transition point from
rime ice to glaze ice. Also, the constants a1, a2 and a3 characterize the problem parameters, such as
air temperature, air velocity and heat transfer parameters. Values of these parameters and con-
stants are documented by Myers and Hammond (1999).
The surface runoff of unfrozen water can be determined from the difference between the dry

growth limit and the predicted ice thickness from Eq. (24), since incoming droplets must either
accumulate as ice, or flow off the ice surface. The analytical solution for the dry growth limit is
derived by a balance between incoming droplets and corresponding ice growth. This solution
follows from Eq. (25) with b ¼ tw ¼ Bw ¼ 0, i.e.,
oB
ot

¼ bVG
qi

ð26Þ
Then, the flow rate of surface runoff, ĥh, can be determined from the difference between rime ice,
Eq. (26), and glaze ice, Eq. (24), as follows:
oĥh
ot

� oB
ot

����
rime

	 oB
ot

����
glaze

¼ bVG
qi

	 a2
B
þ a3
1þ a1b

ð27Þ
where B and b represent the thicknesses under glaze conditions, as outlined in Eq. (24).
The main predicted parameters of interest in this problem are the growth of ice and the un-

frozen water layer. Several grids were used, but relatively course grids (such as 5 · 21 nodes) were
found to be adequate for providing the grid independent results. The example of a 5 · 21 grid
layout refers to a uniform mesh spacing with 5 and 21 subdivisions in the x- and y-directions,
respectively, with fewer x-direction subdivisions considered necessary since it is a 1-D problem in
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the y-direction (see Fig. 1). Thus, the grid refinements were performed in y-direction, which
corresponds to the direction of ice growth in this problem.
Wall boundary conditions of specified temperature and zero gradient of phase fraction were

specified. The phase fraction condition means that the droplets initially enter a double control
volume (CV) at the wall, until ice completely fills that CV. Then, the ice interface moves from CV
to CV in the usual fashion. Icing researchers usually use n, when denoting the freezing fraction. At
the inlet, all problem variables were specified for the boundary conditions. The inlet velocity and
liquid water content were 90 m/s and 0.001 kg/m3, respectively. Due to this high incoming velocity
over a relatively short domain width (10 cm), and comparisons against a 1-D analytical solution,
the multi-dimensional effects of droplets deflected by the airstream (including varying droplet
sizes) are neglected. Also, a value of E ¼ 0:5 is used in the computations, when comparing against
the analytical solution having the same E value.
In Case 1 (Figs. 3–5), the ambient air and surface (wall) temperatures are Ta ¼ 272 K and

Ts ¼ 272 K, respectively. Both temperatures are below the freezing point of water (Tf ¼ 273 K).
Thus, incoming droplets are partially solidified into ice on the wall, while some liquid flows off the
surface as surface runback. Due to the difficulty of obtaining reliable, non-intrusive temperature
measurements over a small thickness within the unfrozen water layer, there exists a lack of ex-
perimental data regarding temperatures therein. As a result, analytical solutions serve a useful role
for validation of expected physical trends in the phase change predictions.
In Fig. 3, the predicted ice thickness is compared with the analytical solution and the dry

growth limit for Case 1. Also, the curves corresponding to different collection efficiencies (labeled
as variable E) are shown for comparison purposes. The collection efficiency refers to the ratio of
impinging droplet influx to the mass influx that would occur on the surface if the droplets were not
deflected by the air stream. The comparison with E ¼ 1 in the dry growth limit is made for ref-
erence purposes, since it represents the maximum possible ice buildup when all incoming droplets
are solidified immediately upon impact. The difference between the actual ice buildup and the dry
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growth limit indicates the mass of liquid lost due to runoff or splashback from the surface. Surface
runoff is predicted in the current formulation through Eqs. (8) and (23). The effects of splashback
can be included therein, either directly modelled in the heat balances or indirectly through the
collection efficiency. Although sub-grid modeling of droplet impingement is performed at the
advancing ice interface, certain microscopic information involving splashback may be lost
through the volume averaging process. Some examples include the detailed interactions of droplet
collisions, coalescence or liquid sheared off from the surface of the unfrozen water layer by the air
boundary layer. Detailed modeling of the collection efficiency with computational fluid dynamics
(CFD) represents an important advance of current technology, beyond extensive empiricism
which is often required in semi-analytical icing models.
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As expected, the rate of rime ice buildup in Fig. 3 is greater than the glaze ice buildup, due to
surface runoff of unfrozen water. The dry growth limit is shown for collection efficiencies of 1 and
1/2. In Fig. 3, it can be observed that the predicted results approach the analytical solution when
the time step is reduced (note: dt refers to the time step size in seconds). When a discrete control
volume becomes filled due to incoming solidified droplets, any excess mass must be transferred
implicitly to adjacent volumes without any net loss of mass. This mass transfer varies with the size
of the time step and mesh spacing, so establishing independence of these parameters is important
for validating the algorithm for the moving phase interface.
Although close agreement with analytical results has been achieved with sufficiently refined

mesh and time step sizes, some oscillatory behaviour is observed in the predicted results. This
behaviour may be understood from the aforementioned excess mass transfer. A freezing fraction
computed in Eq. (8) may render the surface film sub-divided among two adjacent control volumes
when the ice interface is very close to the edge of a control volume. In that case, interpolation of
temperatures in Eq. (8) could extend to six elements, rather than four elements surrounding one
node when the interface movement stays within a single control volume during a time step. A
control volume is defined by all sub-control volumes (SCVs) surrounding a given node (see Fig.
2). Thus, this extended interpolation may lead to certain inaccuracies, but results such as Fig. 3
indicate that the oscillations are reduced or eliminated when the mesh spacing and time step are
reduced. In conventional methods of interface tracking, complex grid or coordinate transfor-
mations are often required. Avoiding these added computational costs, by the current method
of volume averaging, is considered to outweigh the aforementioned inaccuracies for coarse grids
or time steps.
A grid refinement study is illustrated in Fig. 4. It can be observed that the predicted results

approach the analytical solution when the grid spacing is reduced. As mentioned earlier, the dry
growth limits for different values of the collection efficiency are shown for comparison purposes,
since they represent the maximum possible ice growth under the given flow conditions. Fig. 4
indicates that grid independence of the results was achieved. Additional grid sensitivity studies
have been performed successfully, involving other problem variables and conditions. For example
(Ta ¼ 253 K ¼ Ts), the difference between analytical and computed predictions of the ice growth
rate varies by less than about 1% in the grid independent results. In the numerical formulation, the
grid spacing is refined uniformly and special refinement is not required at the phase interface(s).
This represents a useful advantage over interface tracking methods, which may require grid re-
finement near the moving boundary (phase interface) to apply the boundary conditions. For
example, k 	 x turbulence models require detailed grid refinement within the boundary
layer (Wilcox, 1998). However, in our case, this would entail re-meshing after each time step due
to the moving ice boundary. In contrast, the current formulation does not require such re-
meshing, since sub-grid modeling of the interfacial mass, momentum and heat exchange is
performed.
The time of departure of the glaze ice predictions from the dry growth limit represents the point

of transition from rime ice to glaze ice. There exists a lack of detailed experimental data regarding
this transition process, partly due to the difficulty of obtaining reliable non-intrusive measure-
ments. Perturbations arising from impinging droplets, surface texture or other factors make de-
tailed repeatability of such measurements difficult. Furthermore, the sensitivity of such results to
empirical coefficients should not be overlooked. For example, only ±25% accuracy is available for
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convective heat transfer coefficients of a cylinder in crossflow (Naterer, 2002c). The capabilities of
any predictive icing models should be viewed within the context of these broad ranges of un-
certainties. Thus, their main contributions are the capabilities of predicting the overall trends with
reasonable accuracy.
The effects of evaporative heat transfer on the predicted ice growth are shown in Fig. 5. The

analytical solution uses an evaporation coefficient (labeled as ‘‘chi’’ in Fig. 5) of ve ¼ 8:52 m/s
(Myers and Hammond, 1999). The predicted results agree closely with that analytical result, based
on a grid spacing and time step size of 0.5 mm and 1.0 s, respectively. These parameters were
shown earlier to give time step and grid independent results. The predicted results indicate that
errors in neglecting the evaporative heat loss (v ¼ 0) are relatively minor. Evaporative cooling
occurs when the air flows over the unfrozen water layer. Evaporation from the liquid surface
involves a change of phase and the latent heat of vaporization. Water molecules near the surface
of the glaze film experience collisions by surrounding gas molecules to increase their energy above
the amount needed to overcome the surface binding energy. The energy absorbed to evaporate the
liquid molecules largely comes from internal energy within the water layer, so that this water
experiences a cooling effect (reduction of temperature) during the evaporation. Due to these ef-
fects, the relative importance of evaporative heat transfer is expected to vary between icing of
aircraft (high air velocities, small droplets) and ground-based structures such as power lines (lower
air velocities, larger droplets).
In this example, both convection and evaporation terms have comparable magnitudes since

ve e0 ¼ 378:3 W/m2 K, so the evaporation coefficient is about 76% of the magnitude of the con-
vective heat transfer coefficient, h ¼ 500 W/m2 K. Both coefficients are multiplied by DT
(¼ Tw 	 Ta) to establish the full convection and evaporation energy terms, i.e., qconv and qevap in
Eq. (8). Thus, both terms have approximately the same order of magnitude, but when compared
against the other energy terms in Eq. (8), their relative importance varies depending on DT . When
DT is small (Case 1; Fig. 5), the computed results confirm that errors in neglecting the evaporative
heat loss are small, since its relative magnitude compared to the other energy terms is small. The
effects of the evaporation term on the energy balance are considered to be relatively minor at low
values of DT , such as Case 1 (DT ¼ 1 �C), but more significant at higher DT , such as Case 2
(DT ¼ 10 �C).
In Figs. 6–7, the non-dimensionalized results of ice thickness (B=Be) and total volume of liquid

runoff (per unit area of surface; h=he) are plotted against non-dimensional time,
t� ¼ ðt 	 twÞ=ðte 	 twÞ. The purpose of using these non-dimensional variables is focusing on the
glaze ice period, which is initiated at tw. This extends over a reference time period denoted by te,
when the ice thickness and liquid runoff are Be and he, respectively. A grid spacing and time step
size of 0.5 mm and 1.0 s, respectively, were used. The results show generally close agreement
between analytical and computed results over a range of temperatures.
It should be noted that glaze ice is predicted under typical conditions representing in-flight

aircraft icing at low temperatures. Low temperatures of )10 �C in Figs. 6–7 are often associated
with rime ice on ground-based structures (Poots, 1996). However, the transition depends on the
flow parameters, such as wind speed and droplet diameter. For example, larger supercooled
droplets may tend to freeze more slowly as they spread over the surface to form an unfrozen water
layer. Larger droplets and/or a high liquid water content have a potential for a high release rate of
latent heat, thereby sustaining glaze ice at low temperatures.
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As expected in Fig. 6, the rate of glaze ice growth is lower when the air and surface temper-
atures are reduced from )1 �C (272 K) to )10 �C (263 K). The rime ice thickness is zero initially.
But the glaze ice results are slightly above zero initially (t� ¼ 0), since the non-dimensional time
starts at tw, which comes after the end of the rime ice period. As mentioned earlier, the computed
results of Fig. 6 agree reasonably well with the analytical results.
In Fig. 7, the computed and analytical results are shown for Case 2 (Ta ¼ 263 K and Ts ¼ 263

K). The non-dimensional volume of liquid runoff (per unit area of surface) is determined from the
difference between the dry growth limit and the predicted glaze ice buildup. This difference is
caused by liquid runoff from the flowing supercooled surface film. The nearly constant slope of
this curve indicates the volume flow rate of unfrozen water along the surface. In this article, this
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runback flow is driven by shear stresses imparted by the air flow across the water/air interface of
the glaze film. Based on Sections 2.2 and 2.3, this runback flow is accompanied by a linear velocity
profile through the thin surface layer of unfrozen water. In Fig. 7, it can be observed that the
computed results of surface runoff agree closely with the analytical solution.
In Fig. 8, the predicted growth rate of ice over time is depicted, while considering a range of

temperatures. The purpose of this figure is to confirm that this growth rate approaches the dry
growth limit (0.09 mm/s) when the temperature is lowered sufficiently. In that case, the glaze ice
must approach the two-phase limit (rime ice), since all droplets are solidified on impact. The
sudden decrease of ice growth in the computed results at the early stages of time, which can be
found analytically, reflects the transition from rime ice to glaze ice. Following this transition
point, the surface runback leads to a lower growth of ice. It can be observed that the predicted
results properly agree with the analytical solution (dry growth limit) at low air and surface
temperatures. This result suggests that the freezing fraction of incoming droplets, Eq. (8), ap-
proaches the correct limiting value of 1 at low temperatures.
In the surface runoff modeling, Eqs. (17) and (21) are used to predict the runback flow. A

main parameter of importance therein is the thickness of the unfrozen water layer, bðtÞ. In
order to assess the suitability of such modeling in Eqs. (17) and (18), additional validation
against experimental data for iced cables was performed in Fig. 9. The main purpose of Fig. 9 is
to investigate the effects of water thickness on the growth of ice. The water thickness may vary
due to waviness or splashback along its surface, or other factors. Figure 9 considers ±20%
variations of the average water thickness due to such factors. These variations affect the
temperature gradient and heat transfer across the water layer, thereby affecting the rate of ice
growth.
The measured data was collected from freezing rain experiments described by Lu et al. (1999).

Reaching proper thermal equilibrium between droplets and air, particularly over a wide range of
droplet sizes and air temperatures, involves substantial practical difficulties. As a result, outdoor
spray nozzles were used to simulate the freezing rain experiments essentially naturally. The air
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flow was driven past a horizontal, circular conductor placed perpendicular to the air stream. The
supply water was pre-cooled and the distance of trajectory was sufficiently large, so that the
droplets reached the test piece as close as possible to the air temperature. The measured ice mass
was converted to an equivalent thickness of ice (depicted in Fig. 9), based on a uniform radial
thickness which yields the same equivalent mass as that actually observed. Although not measured
directly, the mass of unfrozen water must balance the difference between the measured ice growth
and the total droplet influx on the surface. In the current technique, collecting the unfrozen water
would be difficult due to uncontrolled mixing of surface runoff with other incoming droplets (not
directly contacting the ice surface). Additional details of the experimental procedure are described
by Lu et al. (1998).
In Fig. 9, the freestream wind velocity and liquid water content of air are 5 m/s and 0.00078 kg/

m3, respectively. The surface heating rate is 46 W/m and the ambient air temperature is Ta ¼ 267:5
K. The results indicate that ±20% fluctuations in the water thickness still render results within
close agreement of the experimental data. Thus, minor waviness and splashback, which alter the
film thickness in Eqs. (17) and (18), are not expected to have a major impact on the ice prediction
accuracy. However, much larger variations, such as those occurring from ice-induced surface
vibrations (not modelled herein), would likely require extensions of the current numerical for-
mulation.
The experimental uncertainties inherent in the measured data were caused by the measurement

of the incoming precipitation, and other factors. The repeatability of this experimental data was
confirmed. The data presented in Fig. 9 is considered to be accurate within ±10%. In addition to
the results shown in Fig. 9, other comparisons with experimental data have been performed re-
garding the effects of heat conduction in the unfrozen water layer, and the temperature gradients
on both sides of the ice/water interface. It was observed that when heat conduction was neglected
through the water film, appreciable errors in the predicted ice thickness were observed under
certain conditions.
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5. Conclusions

A new fixed grid methodology has been developed for predicting multiphase flows with icing
and impinging droplets on a flowing supercooled surface film. The finite element method indicates
that phase volume averaging of the surface film can be used when analyzing the shear-driven
motion of the film. Such averaging represents a useful alternative to Lagrangian phase tracking,
when applied to one dispersed phase (droplet flow) and three continuous phases (air, surface li-
quid film and moving solid boundary), simultaneously. Mass transfer across the inter-element
boundaries within the surface film, coupled with the momentum balance therein, can accom-
modate the liquid runback. By de-coupling these balances from the droplet influx, a standard
algebraic solver can be used. This de-coupling is achieved through a volume averaged freezing
fraction of incoming droplets. In the article, the predicted results are successfully validated against
both analytical and experimental data.
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Appendix A. Integral approximation of convection coefficient over a surface of arbitrary shape
The convective heat transfer coefficient can be approximated based on momentum and energy
integral equations. The momentum integral equation represents a momentum balance across a
laminar or turbulent boundary layer. For 2-D flows with an arbitrarily varying freestream velocity
(Kays and Crawford, 1992)
sw
q

¼ d

dx
u21d2
� �

þ d1u1
du1
dx

ðA:1Þ
where d1ðxÞ is the displacement thickness,
d1ðxÞ ¼
1

u1ðxÞ

Z 1

0

u1ðxÞ½ 	 uðx; yÞdy ðA:2Þ
and d2 is the momentum thickness, given by
d2 ¼
1

u21

Z 1

0

uðx; yÞ½u1ðxÞ 	 uðx; yÞdy ðA:3Þ
The velocity component along the surface in the x-direction is represented by uðx; yÞ.
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A.1. Laminar regime

Based on the method of Thwaites (1949) for laminar flows, Eq. (A.1) can be solved to give
d2;l ¼
0:664m0:5

u2:841

Z x

0

u1ðxÞ4:68 dx
 �0:5

ðA:1:1Þ
A similar approximation for the energy integral equation yields (Kays and Crawford, 1992)
u1
m
dðd23Þ
dx

¼ 11:68	 2:87 d23
m
du1
dx

ðA:1:2Þ
where the conduction thickness, d3, is given by
d3 ¼
kðTw 	 T1Þ

qw
¼ k
hðxÞ ðA:1:3Þ
Eq. (A.1.2) can be integrated to give
d3ðxÞ ¼
11:68m

R x
0
u1:871 dx

u1ðxÞ2:87

( )0:5

ðA:1:4Þ
Thus, from Eq. (A.1.3), the convective heat transfer coefficient becomes
hðxÞ ¼ 0:2926km	0:5 u1ðxÞ	2:87
Z S

0

u1ðxÞ1:87 ds
	 
	0:5

ðA:1:5Þ
A.2. Turbulent regime (smooth surface)

The power law of the wall for a turbulent boundary layer, together with the momentum integral
equation, Eq. (A.1), can be used to give (Kays and Crawford, 1992)
d2;t ¼
0:036m0:2

u1ðxÞ3:29
Z x

0

u1ðxÞ3:86 dx
 �0:8

ðA:2:1Þ
Solving the energy integral equation for varying u1 and a smooth surface (Kays and Crawford,
1992),
StðxÞ ¼ hðxÞ
qcpu1ðxÞ

¼ 0:0287Pr	0:4 ðTw 	 T1Þ0:25l0:2R x
0
ðTw 	 T1Þ1:25qu1dx

h i0:2 ðA:2:2Þ
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A.3. Turbulent regime (rough surface)

Based on the law of the wall for the thermal boundary layer along a rough surface,
StðxÞ ¼ hðxÞ
qcpu1ðxÞ

¼ cf=2

Prt þ
ffiffiffiffiffiffiffiffiffi
cf=2

p
=Stk

ðA:3:1Þ

swðxÞ ¼ 0:0125qu21
d2u1

m

 �	1=4

ðA:3:2Þ
where Prt � 0:9 (Kays and Crawford, 1992) and the friction coefficient, cfðxÞ, is defined as
cfðxÞ ¼
swðxÞ
qu21=2

ðA:3:3Þ
Using the log law of the wall to represent the wall shear stress in Eq. (A.1), we have
d2;t ¼
0:036m0:2

u1ðxÞ3:29
Z x

0

u1ðxÞ3:86
 �0:8

ðA:3:4Þ
The law of the wall for the fully rough region (Kays and Crawford, 1992) gives
cf
2
¼ 0:168

ðlnð846d2;tðxÞ=ksÞÞ2
ðA:3:5Þ
where d2;t is determined from Eq. (A.3.4). The variable ks is the specified grain roughness height.
Also, Stk (Stanton number based on the friction velocity, us ¼

ffiffiffiffiffiffiffiffiffiffi
sw=q

p
) is required in Eq. (A.3.1),

i.e.,
Stk ¼ 0:8Re	0:2k Pr	0:44 ðA:3:6Þ
where
Rek ¼
usks
m

ðA:3:7Þ
Based on these definitions, the appropriate regime can be determined as follows: Rek < 5
(smooth), 5 < Rek < 70 (transition) and Rek > 70 (rough). Then, the convective heat transfer
coefficient can be computed based on the following steps: (i) find d2;t from Eq. (A.3.4), (ii) specify
ks and find cf=2 from Eq. (A.3.5), (iii) find sw from Eq. (A.3.2) and use it to obtain Rek and Stk in
Eq. (A.3.6) and (iv) find StðxÞ and hðxÞ from Eq. (A.3.1). In the numerical model, the bounds of
integration are the edges of the control volume at the ice interface.
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